Access to the General Education Curriculum for Preschoolers with Disabilities: Children’s School Success

Joan Lieber
University of Maryland

Eva Horn, Susan Palmer, and Kandace Fleming
University of Kansas

As stipulated in the Individuals with Disabilities Education Act (IDEA) 2004, preschool children are provided with access to the general education curriculum when they are in settings with children without disabilities and when their learning outcomes are met in these settings. In this article, we describe how access can be achieved through a curriculum, Children’s School Success, which was designed using principles of universal design for learning and specific curriculum modifications. Further, we provide quantitative and descriptive information showing that preschool children with disabilities can make gains in both academic and social outcomes using the Children’s School Success curriculum.

Both the Individuals with Disabilities Education Act (IDEA) 1997 and IDEA 2004 feature the concept of access to the general education curriculum in the provision of educational services for children and youth with disabilities. The law refers to this concept by stating that a child’s individualized education program (IEP) must include:

a statement of the child’s present levels of academic achievement and functional performance, including how the child’s disability affects the child’s involvement and progress in the general education curriculum (IDEA, 2004; Title I, B, 614[d][1][A][1]).
and

a statement of measurable annual goals, including academic and functional goals, designed to meet the child’s needs that result from the child’s disability to enable the child to be involved in and make progress in the general education curriculum (IDEA, 2004; Title I, B, 614 [d]1AIII[aa]);

and finally

a statement of the special education and related services and supplementary aids and services, ... and a statement of the program modifications ... that will be provided for the child—to be involved in and make progress in the general education curriculum (IDEA, 2004; Title I, B, 614 [d]1AIV[bb]).

The purpose of this article is to explore the notion of access to the general curriculum for preschool children with special needs, with a specific focus on ensuring that children not only have access but make meaningful progress. We begin with a discussion of access, followed by a description of one curriculum, Children’s School Success, that we developed as a general education curriculum that would be accessible to preschoolers with disabilities. Finally, we provide evidence, both quantitative and descriptive, that preschoolers with disabilities can make academic and social progress when given access to a general education curriculum with accommodations when necessary.

ACCESS TO THE GENERAL EDUCATION CURRICULUM

There are two key interrelated issues suggested by the IDEA mandate: designing the curriculum so that all children have access to the context in which the curriculum is presented, and all children have the opportunity to be actively engaged. To ensure access and active engagement, the four concepts of curriculum, access, universal design for learning, and individual accommodations must be understood and addressed.

Curriculum

The curriculum is more than a collection of enjoyable activities that occur in the preschool classroom (National Association for the Education of Young Children & National Association of Early Childhood Specialists in State Departments of Education [NAEYC & NAECS/SDE], 2003). Rather, a curriculum is a set of plans and activities that lead to children’s learning (Marsh & Willis, 1995). A curriculum should serve as a comprehensive guide for instruction and day-to-day interactions with young children (Branscombe et al., 2003; Trister-Dodge & Bickart, 2003; Wolery & Sainato, 1996). Curriculum is the “what” of early education; it is the content that the educators provide and that the children learn (Nolet & McLaughlin, 2000). It is separate from the strategies or procedures used to teach children the content, although the line between curriculum and instruction is often difficult to separate in day-to-day practice.
The primary task of the early educator who is supporting young children with disabilities’ access to the general curriculum is identifying the most critical knowledge across developmental and content domains that all children are expected to learn (Division for Early Childhood, 2007). This “knowledge” then becomes the top priority in developing the individualized child outcomes so that the child makes progress within the general curriculum.

Access

The meaning of access in IDEA 1997 and retained in IDEA 2004 far exceeds earlier definitions of access and goes beyond the concepts of mainstreaming and inclusion. Access means more than placing children in childcare programs or preschools (Horn et al., 2004). Children may be present, but because of cognitive, sensory, affective, physical, linguistic, or cultural barriers, the curriculum remains inaccessible to them. An accessible curriculum means that all have the opportunity to be actively engaged and to achieve meaningful, positive outcomes. But how can access and participation be achieved for all?

To date, the primary method used to address access and participation for children with disabilities has been through educators and therapists who work together to address a child’s needs for modifications and adaptations. The multidisciplinary team designs modifications by simplifying the content; having adults and/or peers provide additional instructional supports; designing alternative, individually appropriate learning goals within activities; and adapting learning materials. These efforts are appropriate; however, they are geared toward the individual child and are added after the fact. Making the curriculum accessible after the fact can be time consuming, challenging for the team, and beneficial to only a small number of children at a given time or within a given activity.

Universal Design

The practice of making adaptations to an existing curriculum is like adding a wheelchair ramp to an existing building rather than designing the ramp during construction (Orkwis, 1999). The notion of universal design originates from the field of architecture in which there has been an effort to create buildings that are accessible to everyone, from their design to construction. Such efforts have led to the consideration of all possible accommodations and their subsequent incorporation into the blueprint (e.g., designing entryways with stairs and ramps) and construction rather than having to add accommodations after the fact (e.g., adding a ramp to the exterior of the building after construction). The after-the-fact method is more expensive, takes more time, and may be awkward and unsightly. Universally designed access features are not only more attractive, but they are also useful for individuals with and without disabilities, thereby benefiting many people simultaneously.

Since the early 1990s, many persons in education have begun to recognize the applicability of universal design to teaching and learning (Center for Applied Special Technology [CAST], 2006). Universal design for learning in working with young
children should provide team members with “a blueprint for creating flexible goals, methods, materials, and assessments that accommodate learner differences” (CAST, 2006, p. 8). The “universal in Universal Design . . . does not imply a single solution for everyone, but rather it underscores the need for inherently flexible, customizable content, assignments, and activities” (Rose & Meyer, 2000, p. 18).

Incorporation of universal design for learning within an early childhood curriculum is necessary given increasing situations in which teams must meet the varying needs of diverse groups of children and ensure that they all learn (Hanna, 2005). A universally designed curriculum focuses on creating learning environments and adopting practices that allow for access and participation by all children, regardless of individual, cultural, or linguistic differences. A curriculum that incorporates universal design for learning from the beginning rather than as an after-the-fact adaptation gives children a variety of formats for responding; using resources and materials; demonstrating what they know; and expressing ideas, feelings, and preferences (National Center on Accessing the General Curriculum [NCAC], 2003).

Three essential principles of universal design for learning have been identified (e.g., Blackhurst et al., 1999; CAST, 2006; Orkwis, 1999; Orkwis & McLane, 1998). A universally designed curriculum provides:

- **Multiple means of representation.** This principle ensures that instruction, questions, expectations, and learning opportunities are provided in various formats and at different levels of complexity, addressing a range of ability levels and needs.
- **Multiple means of engagement.** This principle ensures various opportunities are presented for arousing children’s attention, curiosity, and motivation, addressing a wide range of interests, preferences, and personal learning styles. Engagement is then maintained by providing various levels of scaffolding, repetition, and appropriate challenges to ensure successful learning.
- **Multiple means of expression.** This principle ensures children have a variety of formats for responding; demonstrating what they know; and for expressing ideas, feelings, and preferences. In addition, children have options in their use of materials, addressing individual strengths, preferences, and abilities.

Accommodations for Individuals

The principles of universal design for learning are essential for ensuring not only access, but also complete and meaningful participation across daily routines and activities for all young children (Hitchcock, Meyer, Rose, & Jackson, 2002). However, the implementation of a universal design for learning framework in curriculum design does not take away the need to make accommodations and modifications to meet the individual needs of particular children. To support the achievement of priority learning outcomes for young children with disabilities, the universally designed general curriculum should be viewed as the cornerstone on which all instruction is anchored (Horn et al., 2004). With that as a base, teachers then assess and make appropriate curriculum modifications and adaptations for individual children as necessary.
A curriculum modification is a change in a classroom activity or material that allows a child to participate (Sandall et al., 2002). Increased participation creates more opportunities for the child to develop and learn. Educators should use a curriculum modification strategy when the child is interested in the ongoing activity but is not able to fully participate or may not stay with the activity long enough to learn from it. Early childhood educators can implement a range of curriculum modifications; several authors have identified these strategies (Cavallaro & Haney, 1999; Sandall et al., 2002; Thompson et al., 2002). Thus, through the use of universal design for learning principles for the initial design of curriculum activities and individualized curriculum modifications when necessary, early childhood educators can move toward achieving the goal of access and progress in the general curriculum for all young children.

CHILDREN’S SCHOOL SUCCESS CURRICULUM

We developed the Children’s School Success (CSS) curriculum to enhance educational outcomes for children who are at risk for school failure as they enter elementary school. We defined children at risk as those who live in poverty, are English learners, or have identified disabilities. When we designed CSS, we incorporated the principles of universal design and provided specific tips and examples of curriculum modifications that the teacher might make to address the needs of individual children.

The CSS curriculum model addresses two broad areas of competence that are necessary for success in kindergarten and beyond. The first area, academic competence, draws from research on young children’s learning of language and literacy, mathematics, and science concepts. The second area, social competence, includes self-regulation, prosocial interaction with peers, and the prevention of challenging behaviors. Bridging these two areas is a third, called individualization. This area focuses on helping teachers be aware of children who are not actively participating in classroom activities or those children who do participate but who are unable to master the curriculum content. In this area we provide teachers with strategies to modify classroom activities so that children can be successful learners.

The development of the CSS curriculum began at an expert consultant focus group meeting. We met with prominent researchers in each of the curricular areas, including Lucia French (science); Chris Lonigan and Doug Powell (literacy); Doug Clements (mathematics); and Gary Ladd, Martha Bronson, and Lise Fox (social competence). At that meeting, we conceptualized the curriculum framework.

Academic Competence

The ScienceStart Curriculum (French, Conezio, & Boynton, 2003) is the core of the academic area. Science has four topic areas: measurement and graphing, properties of matter, color and light, and neighborhood habitat. The problem-solving process that is at the heart of science is woven throughout. Lessons are structured so that teachers guide children to reflect and ask, plan and predict, act and observe, and report and
reflect. Every other day, teachers introduce science concepts in a large group activity. Following that introduction, children participate in a science small group activity. On those “academic” days, there is also a math small group activity (based on the Building Blocks Curriculum; Clements & Sarama, 2003), a book reading activity, a letter knowledge activity, and a phonemic awareness activity (Phonemic Awareness in Young Children; Adams, Foorman, Lundberg, & Beeler, 1998), which are all integrated around the science concepts.

Here’s an example of a day that focuses on science and integrates other curriculum areas. The topic area is measurement and graphing and the lesson is “Apples Can be Compared in Different Ways.” During the large group activity, the teacher introduces the lesson by:

Reflect and Ask: Ask the children what they know about apples while showing red, yellow, and green apples of different sizes. By providing the actual apples, the teacher uses multiple means of representation to interest all children in the activity.

Plan and Predict: Teacher and children make a plan about how to measure the weight and circumference of the apples; they predict which apple they’ll like the taste of best. The teacher uses a graph to record children’s predictions about their favorite apple; the children taste the different apples and then see if their predictions were confirmed. Multiple means of engagement are addressed directly in this aspect of the activity in that a child’s individual interests and preferences (i.e., some children will focus on size, some on color, and others on shape) are used to arouse attention, curiosity, and motivation to be engaged in the activity.

In the science small group activity, the science problem-solving process continues as children weigh and measure the apples.

Act and Observe: Children measure the apples using food scales to measure weight and yarn to measure circumference. Children use multiple means of expression as they measure the apples in different ways using different tools.

Report and Reflect: Teachers record the weight and circumference of apples on a chart, asking children which apple was the heaviest, lightest, biggest around, and smallest around.

In the math small group activity, the use of apples continues. During this activity, the teacher asks children to think about making pies using apples that are all the same color. Children sort objects based on color, count the number of apples they can use in each pie, determine which pie has the most apples, and either write using number cards or dictate to a teacher or peer the number of apples. Here again we see the use of multiple means of expression to support all children’s participation.

In the book reading activity, curriculum integration continues as the teacher reads Apple Pie Tree (Hall & Halpern, 1996).
Social Competence

We followed a similar process in developing the social competence portion of CSS. This part of the curriculum is drawn from Webster-Stratton’s *Dina Dinosaur Classroom-based Curriculum* (Webster-Stratton & Reid, 2002). There is strong research evidence that this curriculum is effective in promoting positive social skills and conflict management as well as reducing conduct disorders (Webster-Stratton & Hammond, 1997). The topic areas that we cover are classroom rules, doing your best in school, understanding and detecting feelings, problem solving, anger management and self-regulation, making friends and talking with friends. Similar to the academic portion of the curriculum, social competence activities occur every other day, with a large group Dina activity, and a small group Dina activity. Other activities are the same as those on the academic days and include small group math and literacy activities.

“Feeling Frustrated” is an example of a lesson that emphasizes social competence. It’s part of a unit on feelings, during which children learn about simple feelings such as happy and sad, as well as more sophisticated feelings such as pride and frustration. In the large group portion of the lesson, the teacher begins by recalling a situation in which he or she felt frustrated, then describes a time when Wally (a puppet used on a daily basis) felt frustrated because his tower of blocks kept falling down. During the follow-up small group activity, children describe and draw a picture of a time that they felt frustrated. The teacher records the children’s words. Feeling frustrated is integrated into the small group math activity, which emphasizes reproducing a simple pattern. To accomplish that objective, the teacher asks the children what Wally was doing when he felt frustrated. The teacher then explains that the children going to have the chance to build a tower like Wally did and that hopefully they won’t feel frustrated when they build their tower. The large group and small group activities that reinforce the concept of feeling frustrated allow multiple means of engagement for all children.

Individualization

We developed this curriculum component for children who have difficulty participating in curriculum activities as they are written and for those who need additional supports to learn curriculum content. The individualization component is based on Sandall et al.’s *Building Blocks for Teaching Preschoolers with Special Needs* (2002). Teachers learn about individualization strategies in several ways. First, we provide a daylong training on individualization to all teachers who implement CSS. We discuss eight curriculum modifications: environmental support, materials adaptation, simplify the activity, use child preferences, special equipment, adult support, peer support, and invisible support. During the training, teachers have the opportunity to think of a child who’s having trouble with CSS in their classroom, identify when during the day that difficulty occurs, and identify specific curriculum modifications that they’ll try with that child.

Second, the CSS curriculum provides examples of curriculum modifications to try after each large group activity. During the apple lesson described above, teachers are
provided with the following adaptation hint: simplify the activity; focus on only one concept for children who are just learning about relational concepts—big/small is a good choice.

Finally, site supervisors who work with teachers on a weekly basis to implement the curriculum with a high degree of fidelity are also available to consult with teachers about how they might individualize instruction for children who have difficulty.

REPORT OF PRELIMINARY DATA

As mentioned previously, we developed the CSS curriculum for preschool children at risk for school failure. One subset of this at-risk group was children with disabilities. In order to determine if children with disabilities made progress using the CSS curriculum, we analyzed their pre- and post-test scores for their year of preschool using data from the larger CSS study. Although the CSS project will ultimately have data from a five-year longitudinal study, for this analysis we used data from two school years from preschool classrooms at five sites across the country: California, Kansas, Indiana, West Virginia, and Maryland. Classrooms included Head Start, state-funded pre-kindergarten, and community-based preschool programs. During the first two years of the longitudinal study, we randomly assigned classrooms by teacher entry first into a control condition in which teachers used a variety of early childhood curricula, followed by a year of implementation using the CSS curriculum. We included the data for children with IEPs from the first two years of implementation of CSS to illustrate the progress those children made using the CSS curriculum. Although there were 30 CSS classrooms in the first two years of the study, 20 classrooms had children with disabilities.

Participants

There were 58 children with IEPs in the CSS classrooms; 16 were female and 42 were male. Children’s age at the beginning of the school year ranged from 44 to 64 months, with a mean of 53.89 (standard deviation $[SD] = 4.38$). Seventeen children (30%) were of Hispanic or Latino origin; 6 children (10%) were African American; 29 children (50%) were White, Non-Hispanic; 3 children (5%) were multiracial; 2 children (3%) were Asian; and the race of 1 child was not reported. Of the 58 children, 14 (24%) were English learners, with Spanish being the predominant home language for 12 children and Tagalog or another language for the other children.

Participants came from communities of various sizes: 14 (26.4%) were from a large city or metropolitan area of over 200,000 people, 8 (15.1%) were from an urbanized area between 50,000 and 200,000, 18 (34%) lived in a town or small city between 2,500 and 50,000, and 13 (24.5%) lived in rural areas or towns with populations of less than 2,500 people. The income level of participants’ families was distributed across the following categories: less than $4,999 to $9,999, 15 participants; between $10,000 and $19,999, 18 participants; between $20,000 and $29,999, 12 participants; between $30,000 and $39,999, 3 participants; and from $40,000 and beyond, 5 participants.
The categories of disabilities describing the participants were speech or language impairment (29 children), developmental delay (19 children), emotional disturbance (1 child), orthopedic impairment (1 child), autism (1 child), other health impairment (1 child), and intellectual disability (1 child).

Severity of Disability

Each child’s teacher completed the ABILITIES index (Simeonsson & Bailey, 1991) and rated characteristics in nine areas such as intellectual functioning, intentional communication, physical health, social skills, and audition on a 1–6 scale ranging from normal to extreme/profound disability. For the 58 children, the mean severity across the nine areas was 1.55 ($SD = .48$). Because there are multiple indicators being rated within each of the nine characteristics, it was possible for children to have quite severe or profound disabilities on one indicator and to have normal functioning on another indicator within the same area. For example, a child might have a physical disability involving the right hand and arm such that two of the six ratings for limbs would be severe, but the other ratings for right leg, left leg, left arm, and left hand would be normal. Therefore, we made comparisons of severity of the disability across categories using the highest or most profound rating within the category. The means for each area of disability are provided in Table 1.

Assessments

We assessed the children at the beginning and end of their preschool year using the following measures: Peabody Picture Vocabulary Test (PPVT-III; Dunn & Dunn, 1997); selected subtests of the Woodcock Johnson Tests of Achievement (Woodcock, McGrew, & Mather, 2001); Individual Growth and Development Indicators: Picture Naming, Rhyming and Alliteration (McConnell & McEvoy, 1996); Letter Naming (Head Start, 2001); and Emergent Writing (Diamond, Gerde, & Powell, 2007).

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Maximum Severity Score by Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Audition</td>
<td>57</td>
</tr>
<tr>
<td>Social Skills/Behavior</td>
<td>58</td>
</tr>
<tr>
<td>Intellectual Functioning</td>
<td>58</td>
</tr>
<tr>
<td>Limbs</td>
<td>58</td>
</tr>
<tr>
<td>Intentional Communication</td>
<td>58</td>
</tr>
<tr>
<td>Tonicity</td>
<td>58</td>
</tr>
<tr>
<td>Vision</td>
<td>58</td>
</tr>
<tr>
<td>Structural Status</td>
<td>58</td>
</tr>
<tr>
<td>Physical Health</td>
<td>58</td>
</tr>
<tr>
<td>Valid N (list wise)</td>
<td>57</td>
</tr>
</tbody>
</table>
Teachers completed the Social Skills Rating System (Gresham & Elliott, 1990) for all children, but they rated only children with disabilities using the ABILITIES.

CHANGES OVER PRESCHOOL YEAR:
QUANTITATIVE DATA

To determine if the preschool children with disabilities who received the CSS curriculum changed significantly in their social and academic skills, we conducted paired sample t-tests comparing scores at the beginning of the preschool year with scores at the end of the preschool year. Children experienced significant gains in literacy as indicated by their Rhyming Score $t(40) = -3.03, p = .004$, Woodcock-Johnson Letter-Word Identification score $t(54) = -6.55, p < .001$, Woodcock-Johnson Word Attack score $t(52) = -5.56, p < .001$, Emergent Writing score $t(54) = -5.68, p < .001$, Letter Naming Task score $t(41) = -6.80, p < .001$, Picture Naming Score $t(48) = -3.07, p = .004$, and PPVT-III standardized score $t(48) = -3.30, p = .002$. Children also experienced significant gains in their math skills as indicated by their Woodcock-Johnson Applied Problems score $t(51) = -8.13, p < .001$, Woodcock-Johnson Quantitative Concepts score $t(52) = -7.21, p < .001$, and Woodcock-Johnson Quantitative Concepts Number Series score $t(52) = -5.02, p < .001$. Children experienced marginally significant changes in their social skills as indicated by their standardized Social Skills Rating System scores $t(55) = -1.87, p = .07$. Means on all tests were significantly higher at the posttest as shown in Table 2. Thus, preschoolers with disabilities who had access to the CSS curriculum improved in their learning outcomes in both academic and social areas.

CHANGES OVER THE PRESCHOOL YEAR:
DESCRIPTIVE INFORMATION

A more in-depth look at two children’s experiences with the CSS curriculum provides another way to document its use. For these children, their teachers wanted to make sure they received instruction with support to match their needs without major changes to an activity, unless it was necessary. In other words, those CSS teachers used principles of universal design and individualized curriculum modification techniques to provide instruction.

One student, Trent, attended preschool in a community setting in which teachers used the CSS curriculum during the morning instructional time and spent afternoons in rest time and outdoor play, integrating some art activities and other free choice later in the day. Trent was diagnosed with a medical condition that resulted in a general developmental delay. He received services from the local school district special education team that provided an itinerant early childhood special education (ECSE) teacher who regularly visited the classroom and worked with the teachers and Trent’s parents to plan curriculum modifications and specialized instruction as needed. During our observations, we noted that Trent needed some support to maintain active
engagement. This was accomplished in two ways. First, the universal design features noted earlier in the curriculum description, particularly those related to multiple means of engagement were very helpful in supporting Trent’s engagement. Second, the team worked together to plan for a variety of curriculum modifications to ensure that Trent’s individualized needs for supports to maintain active engagement were addressed. For example, when reading the story that accompanied each lesson, the teacher made room for Trent to sit nearby so he could see the book and experience fewer distractions (i.e., provision of invisible support). This allowed him to access information along with the other children.

In addition, Trent’s parents asked for a listing of the books that CSS included and they worked ahead of the teachers to introduce Trent to the material so he would be able to benefit even more when the teacher introduced the books in the classroom. Repeated exposures to the book is an example of a curriculum modification in which the task was simplified (i.e., simplify activity), thus allowing him to be actively engaged and responsive to the discussion and content. Trent’s teacher also encouraged him to look at the book and talk with her about it during center time, providing him with the curriculum modification of adult support so that he could fully understand the content. When the children engaged in art activities in the afternoon, Trent had a
choice of which media to use to represent ideas from the story, just as all the children did (i.e., multiple means of expression).

Trent’s team also determined that the universal design aspect of CSS was insufficient to address all of his learning outcomes, specifically outcomes related to expressive communication and peer interaction, so Trent’s team developed a number of supports. For example, to enhance Trent’s appropriate response to “wh-”questions the adults identified opportunities across large and small group time to ask Trent a “wh-”question. They then used adult supports such as verbal prompts and models to help him respond. The team also identified peer support as a useful modification. When Trent pointed, whined, or simply took materials during a small group activity, peers were prompted by adults to ask Trent what he wanted and to confirm by saying, “Oh, you want the . . .” and providing him with the item. Initially teachers provided a lot of support in the peer situations but with time they were able to pull back their direct prompting and modeling. Another strategy that was frequently used with Trent was to simplify what he was expected to communicate (i.e., simplify activity). For example, when asking children to predict what might occur during a science large group activity, Trent would be asked a two-choice prediction. Initially an approximation of one of the choices was accepted but was always paired with a model of a full sentence response (e.g., Trent says “Orange” and the teacher says “So Trent you think that the color of the paint will change to orange if we add red paint?”).

Another child, Anna, participated in a blended ECSE and general education preschool classroom taught by an ECSE teacher and paraprofessional. The adults in her classroom provided additional supports to adjust their instruction to her physical needs. Anna had only a limited part of her upper arms, but she did have relatively good use of her hands. She also had limits on her ability to walk independently because of missing lower legs and knees. When she did walk she tired easily and had balance problems. She had an electric wheelchair that she could use for mobility for greater distances outside the classroom. Anna also was an English learner and had a diagnosed language delay.

The adults used a number of supports to make the curriculum accessible to her. For example, as a part of the Dina School learning of school rules, all children learned the importance of raising their hands to respond or contribute to large group activities. Because Anna was missing the majority of both of her arms but did have a strong grasp, she was provided with a “hand wand” by one of her peers at the beginning of each large group so that she could easily raise her “hand wand” when she had something to contribute (i.e., specialized equipment). To move around the classroom and participate in small group activities, Anna was assigned a peer who had been shown how to provide her an arm for stabilization as she moved to the next activity (i.e., peer support). Only when the children in the classroom left the room for outside, gym, or other school-wide activities was Anna placed in her electric wheelchair by a teacher and even then one child was assigned each day to ride on the elevator (i.e., environmental support) together with Anna and one teacher as the rest of the children took the stairs (i.e., peer support). At the worktables for art, snack, and writing activities, Anna had a plastic box that raised the surface such that she could easily participate in the tabletop activities (i.e., material adaptation). Again a peer
was assigned each day to make sure that the plastic box was in place for Anna (i.e., peer support).

Since Anna was also an English learner and had an identified speech delay, the teachers modified the curriculum by simplifying activities that emphasized language. They made activities shorter or adjusted their expectations for Anna, but within the context of the CSS lessons. In this way Anna had access to the curriculum but had additional supports related to the identified needs on her IEP. These curricula modifications were successful for Anna because she was interested in participating in the activities but she needed them to be modified so she could be successful and meet her learning outcomes.

We observed other teachers use additional strategies to make CSS accessible to children in their classrooms. They shortened the list of vocabulary words for one student and asked other children to complete only the final steps in a multiple-step activity to address differences in the cognitive and communication levels of those children (i.e., simplified activity). An excellent example of teacher individualization was illustrated by a teacher conducting a small group activity of sentence segmenting in which the children were to in turn clap out the number of syllables in a word or phrase stated by the teacher. The teacher altered the number of syllables from simple one-syllable words to multi-word phrases depending on each child’s current skills. Another teacher planned out which children would receive specific questions or tasks so that they would be challenged but successful.

CONCLUSION

IDEA 1997 and IDEA 2004 require that children with disabilities have access to the general education curriculum and make progress toward their learning outcomes. We developed the Children’s School Success curriculum as a general education curriculum that incorporates principles of both universal design and individualization for effective instruction. CSS is intended to appeal to preschool-aged children, challenge teachers to hold high expectations for all students, and provide guidance for programming that builds in a coherent manner from one day to the next. Preliminary child outcomes for preschoolers with disabilities who used the CSS curriculum are promising; however, results from another two years of implementation may provide additional information about how to help children with disabilities access the general education curriculum.

Preschool educators can examine their current curricula to determine how principles of universal design and individualization can be used to provide access to the content for all children. By determining whether these principles are in evidence currently in a published curriculum and inserting some adjustments to lessons to include both universal design elements and ways to individualize, curricula in our schools can be more accessible to all. If a more unstructured approach is used within classrooms, universal design elements and individualization should still be in evidence, along with the basic high expectations for all children to learn and progress within the general curriculum.
REFERENCES

